Delete design/backend/sequence/inner/ai-회의록자동작성_bk.puml

This commit is contained in:
Daewoong Jeon 2025-10-22 17:46:19 +09:00 committed by GitHub
parent 9d56ba47ec
commit 6b2477299d
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194

View File

@ -1,144 +0,0 @@
@startuml
!theme mono
title AI Service 내부 시퀀스 - 회의록자동작성
participant "TranscriptController" as Controller
participant "TranscriptService" as Service
participant "LLMClient" as LLM
participant "VectorService" as Vector
participant "TranscriptRepository" as Repo
database "Azure OpenAI" as OpenAI <<external>>
database "Vector DB" as VectorDB <<external>>
database "PostgreSQL" as DB <<external>>
== TranscriptReady 이벤트 수신 ==
note over Controller
Azure Event Hubs로부터
TranscriptReady 이벤트 수신
end note
Controller -> Service: processTranscript(meetingId, transcriptText)
activate Service
Service -> Service: 회의 맥락 정보 조회 준비
== 병렬 처리: 맥락 정보 수집 ==
par 회의 정보 조회
Service -> Repo: getMeetingContext(meetingId)
activate Repo
Repo -> DB: SELECT meeting_info
activate DB
DB --> Repo: 회의 정보 반환
deactivate DB
Repo --> Service: 회의 맥락 정보
deactivate Repo
else 이전 내용 조회
Service -> Repo: getPreviousTranscripts(meetingId)
activate Repo
Repo -> DB: SELECT previous_content
activate DB
DB --> Repo: 이전 회의록
deactivate DB
Repo --> Service: 이전 내용
deactivate Repo
end
Service -> Service: 프롬프트 생성
note right
시스템 프롬프트 생성
- 역할 정의
- 변환 규칙 적용
end note
== LLM 기반 회의록 작성 ==
Service -> LLM: generateMinutes(prompt, context)
activate LLM
LLM -> OpenAI: POST /chat/completions
activate OpenAI
note right
model: gpt-4o
temperature: 0.3
max_tokens: 2000
end note
OpenAI -> OpenAI: 텍스트 분석 및 정리
OpenAI --> LLM: 정리된 회의록 내용
deactivate OpenAI
LLM --> Service: 회의록 초안
deactivate LLM
== 회의록 저장 ==
Service -> Service: 회의록 데이터 구조화
Service -> Repo: saveTranscriptDraft(meetingId, content)
activate Repo
Repo -> DB: INSERT INTO ai_transcripts
activate DB
note right
저장 데이터:
- meeting_id
- content (JSON)
- status: DRAFT
end note
DB --> Repo: 저장 완료
deactivate DB
Repo --> Service: transcriptId
deactivate Repo
== 벡터 임베딩 생성 ==
Service -> Vector: createEmbedding(transcriptId, content)
activate Vector
Vector -> OpenAI: POST /embeddings
activate OpenAI
note right
model: text-embedding-3-large
end note
OpenAI --> Vector: 임베딩 벡터
deactivate OpenAI
Vector -> VectorDB: INSERT embedding
activate VectorDB
VectorDB --> Vector: 저장 완료
deactivate VectorDB
Vector --> Service: 임베딩 생성 완료
deactivate Vector
== 이벤트 발행 ==
Service -> Controller: 회의록 생성 완료 응답
deactivate Service
Controller -> Controller: TranscriptSummaryCreated 발행
note right
이벤트 데이터:
- meetingId
- transcriptId
- content
end note
note over Controller, DB
처리 시간:
- 맥락 조회: 100-200ms
- LLM 생성: 3-5초
- 저장: 100-200ms
- 벡터화: 500ms-1초
총: 약 4-7초
end note
@enduml