# Vector DB 통합 시스템 설정 # PostgreSQL (용어집) postgres: host: ${POSTGRES_HOST} port: ${POSTGRES_PORT} database: ${POSTGRES_DATABASE} user: ${POSTGRES_USER} password: ${POSTGRES_PASSWORD} pool_size: 10 max_overflow: 20 # Azure OpenAI (Embedding) azure_openai: api_key: ${AZURE_OPENAI_API_KEY} endpoint: ${AZURE_OPENAI_ENDPOINT} embedding_model: text-embedding-ada-002 embedding_dimension: 1536 api_version: "2023-05-15" # Azure AI Search (관련자료) azure_search: endpoint: ${AZURE_SEARCH_ENDPOINT} api_key: ${AZURE_SEARCH_API_KEY} index_name: meeting-minutes-index api_version: "2023-11-01" # Claude AI claude: api_key: ${CLAUDE_API_KEY} model: claude-3-5-sonnet-20241022 max_tokens: 1024 temperature: 0.3 # Redis (캐싱) redis: host: redis port: 6379 db: 0 password: ${REDIS_PASSWORD} decode_responses: true # Azure Event Hub eventhub: connection_string: ${EVENTHUB_CONNECTION_STRING} name: ${EVENTHUB_NAME} consumer_group: ${AZURE_EVENTHUB_CONSUMER_GROUP} storage: connection_string: ${AZURE_STORAGE_CONNECTION_STRING} container_name: ${AZURE_STORAGE_CONTAINER_NAME} # Application Settings app: name: "Vector DB Service" version: "1.0.0" debug: true log_level: INFO # 용어집 설정 term_glossary: # 검색 설정 search: top_k: 5 confidence_threshold: 0.7 keyword_weight: 0.6 vector_weight: 0.4 # 캐싱 설정 cache: ttl: 3600 # 1시간 prefix: "term:" # 관련자료 설정 related_documents: # 검색 설정 search: top_k: 3 relevance_threshold: 0.70 folder_weight_boost: 0.20 semantic_ranking: true # 캐싱 설정 cache: ttl: 3600 # 1시간 prefix: "doc:" # 데이터 로딩 data: terms_dir: design/aidata terms_files: - terms-01.json - terms-02.json - terms-03.json - terms-04.json documents_file: design/aidata/meet-ref.json